Linear and Vector Algebra
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1. Vector Algebra
1.1 Definition & Notation
· Vector: An element of Rn\mathbb{R}^n (or any field extension) often denoted v=(v1,v2,...,vn)\mathbf{v} = (v_1, v_2, ..., v_n).
· Skeptical question: Why restrict to real fields? Many properties break over finite fields or non‑commutative rings—be mindful of the ambient structure.
1.2 Basic Operations
1. Addition: u+v=(u1+v1,...,un+vn)\mathbf{u} + \mathbf{v} = (u_1 + v_1, ..., u_n + v_n).
2. Scalar multiplication: cv=(cv1,...,cvn)c\mathbf{v} = (cv_1, ..., cv_n).
Pitfall: You cannot "divide" vectors. If someone casually writes v/u\mathbf{v}/\mathbf{u}, they’re sloppy; always reduce to scalar multiplication or solve systems.
1.3 Dot (Inner) Product
· Definition: u⋅v=∑i=1nuivi\mathbf{u} \cdot \mathbf{v} = \sum_{i=1}^n u_i v_i.
· Geometric: u⋅v=∥u∥∥v∥cos⁡θ\mathbf{u} \cdot \mathbf{v} = \|u\|\|v\|\cos\theta.
Strong opinion: Many textbooks overemphasize Euclidean intuition. In high‑dimensional data, "orthogonality" loses meaning — distances concentrate.
1.4 Cross Product & Determinants
· Cross product (only in R3\mathbb{R}^3): u×v=(u2v3−u3v2,u3v1−u1v3,u1v2−u2v1)\mathbf{u} \times \mathbf{v} = (u_2v_3 - u_3v_2, u_3v_1 - u_1v_3, u_1v_2 - u_2v_1).
· Properties: It’s anti‑commutative (u×v=− v×uu \times v = -\,v \times u). Output is perpendicular to both inputs.
Caveat: The cross product isn’t generalizable to n≠3n\ne3. Stop pretending it’s a universal tool; use wedge products in higher dims.
1.5 Common Pitfalls & Strong Opinions
· "Normalized vectors always nicer": Normalization can amplify noise in data—use with caution.
· Beware metric assumptions: Dot‑product–based methods assume Euclidean geometry; in some applications (e.g., text embeddings), other metrics (cosine, Manhattan) may fare better.

2. Linear Algebra
2.1 Vector Spaces & Subspaces
· Vector space VV over field FF: closed under addition & scalar multiplication, with 8 axioms (associativity, commutativity, identity, inverses, distributivity, etc.).
· Subspace W⊆VW\subseteq V: nonempty, closed under the same operations.
Skeptical lens: Treat axioms not as rote rules but as the minimal requirements for linear reasoning—missing any, and your "space" might be a chaotic mess.
2.2 Linear Combinations, Span, and Basis
· Linear combination: a1v1+...+akvka_1\mathbf{v}_1 + ... + a_k\mathbf{v}_k.
· Span: All linear combinations of a set; span(S)\text{span}(S) is the smallest subspace containing SS.
· Basis: A linearly independent set that spans VV.
Opinionated note: Many instructors gush over "the" basis, but bases lack uniqueness. What truly matters is dimension, not your chosen coordinate axes.
2.3 Linear Independence & Dimension
· Linear independence: No nontrivial combination yields zero.
· Dimension: Number of vectors in any basis of VV.
Pitfall: Don’t conflate "independent rows" with "independent columns"—for rectangular matrices, row‐space and column‐space differ.
2.4 Linear Transformations & Matrices
· Linear map T:V→WT: V \to W: T(u+v)=T(u)+T(v)T(u+v)=T(u)+T(v), T(cu)=cT(u)T(cu)=cT(u).
· Matrix representation depends entirely on basis choices.
· Matrix multiplication: ABAB means apply BB then AA. Order matters.
Let’s be frank: Matrices are bookkeeping devices, not mystical objects. Don’t chase matrix aesthetics over understanding the map’s action.
2.5 Eigenvalues & Eigenvectors
· Definition: T(v)=λvT(v)=\lambda v or Av=λvAv=\lambda v.
· Characteristic polynomial: det⁡(A−λI)=0\det(A - \lambda I)=0.
Caveat: Real matrices often aren’t diagonalizable. Don’t assume every system decouples neatly—consider Jordan forms or numeric approximations.
2.6 Rank–Nullity & Applications
· Theorem: dim⁡(ker⁡T)+dim⁡(im T)=dim⁡V\dim(\ker T) + \dim(\mathrm{im}\,T) = \dim V.
Applications:
· Solving Ax=bAx=b: Consistency ⇔ b∈im(A)b\in\mathrm{im}(A).
· [bookmark: _GoBack]Least squares: x=arg⁡min⁡∥Ax−b∥2x=\arg\min\|Ax-b\|^2 solves ATAx=ATbA^TAx=A^Tb.
· PCA: Data covariance matrix eigen‐analysis. Beware centering/scaling.
2.7 Common Pitfalls & Strong Opinions
· Determinant worship: Determinants provide volume scaling, but computing them in high dims is a waste—prefer LU or SVD decompositions.
· Blindly trusting numeric routines: Floating‐point eigenvalues can be garbage if the matrix is ill‐conditioned; always check condition number

